

Rapport technique

Empreinte carbone des plats servis au CHUM

Avril 2024

Préparé pour Centre Hospitalier de l'Université de Montréal (CHUM) 850, rue St-Denis, Montreal (Québec) H2X 0A9

Ce rapport a été préparé par le Centre international de référence sur l'analyse du cycle de vie et la transition durable (CIRAIG).

Fondé en 2001, le CIRAIG a été mis sur pied afin d'offrir aux entreprises et aux gouvernements une expertise universitaire de pointe sur les outils du développement durable. Le CIRAIG est un des plus importants centres d'expertise en cycle de vie sur le plan international. Il collabore avec de nombreux centres de recherche à travers le monde et participe activement à l'Initiative sur le cycle de vie du Programme des Nations Unies sur l'Environnement (PNUE) et de la *Société* de Toxicologie et de Chimie de l'Environnement (SETAC).

Le CIRAIG a développé une expertise reconnue en matière d'outils du cycle de vie incluant l'analyse environnementale du cycle de vie (ACV) et l'analyse sociale du cycle de vie (ASCV). Complétant cette expertise, ses travaux de recherche portent également sur l'analyse des coûts du cycle de vie (ACCV) et d'autres outils incluant les empreintes carbone et eau. Ses activités comprennent des projets de recherche appliquée touchant plusieurs secteurs d'activités clés dont l'énergie, l'aéronautique, l'agroalimentaire, la gestion des matières résiduelles, les pâtes et papiers, les mines et métaux, les produits chimiques, les télécommunications, le secteur financier, la gestion des infrastructures urbaines, le transport ainsi que de la conception de produits « verts ».

AVERTISSEMENT

Les auteurs sont responsables du choix et de la présentation des résultats. Les opinions exprimées dans ce document sont celles des membres de l'équipe de projet et n'engagent aucunement Polytechnique Montréal ou l'ESG-UQÀM.

À l'exception des documents du CIRAIG, comme le présent rapport, toute utilisation du nom du CIRAIG, de Polytechnique Montréal ou de l'ESG-UQÀM lors de communication destinée à une divulgation publique associée à ce rapport doit faire l'objet d'un consentement préalable écrit d'un représentant dûment mandaté du CIRAIG, de Polytechnique Montréal ou de l'ESG-UQÀM.

CIRAIG

Centre international de référence sur l'analyse du cycle de vie et la transition durable Polytechnique Montréal 3333 Chemin Queen-Mary, suite 310 Montréal (Québec) Canada H3V 1A2

www.ciraig.org

Avis au lecteur

Ce rapport n'est pas un rapport d'analyse du cycle de vie. C'est un rapport simplifié de quantification d'empreinte carbone pour un projet d'implantation d'affichage d'empreinte carbone.

Équipe de travail

Réalisation

Lisa Duval Rédaction et modélisation

Elliot Muller Automatisation des résultats et contrôle technique

Catherine Houssard, Ing., PhD Direction du projet

Collaboration

Sara Russo-Garrido, M.Phil., M.Sc Direction exécutive du CIRAIG

Pr Anne-Marie Boulay, Ing., PhD Direction générale du CIRAIG

Table des matières

ÉQUIPE DE TRAVAIL	IV
TABLE DES MATIÈRES	V
LISTES DES TABLEAUX	VII
LISTES DES FIGURES	VIII
LISTE DES ACRONYMES ET ABRÉVIATIONS	IX
1 MISE EN CONTEXTE	10
Objectifs	10
Terminologie utilisée	10
Plats étudiés	
Limites	
2 MÉTHODOLOGIE	13
L'approche cycle de vie	13
L'analyse du cycle de vie	13
L'empreinte carbone	15
Le barème de notation	15
3 CHAMP DE L'ÉTUDE	17
Fonction et unité fonctionnelle	
Frontières du système	
Données	20
Hypothèses générales, calculs et limites	
Principes généraux de modélisation	
Critère de coupurePrise en compte de la variation de masse à la cuisson	
Prise en compte de la variation de masse à la cuisson Proxys utilisés	
3.1.1.1 Herbes et épices	

3.1.1.2	Fromage	23
3.1.1.3	Poissons et fruits de mer	
Gaspillage a	alimentaire	23
Évaluation de	s impacts du cycle de vie	23
4 RÉSULT	TATS	24
Résultats géne	éraux	24
	on des étapes du cycle de vie	
	on par ingrédient	
Les soupes		28
Les plats chau	ıds	30
5 CONCL	USIONS	34
6 RÉFÉRE	ENCES	35
	COMPOSITION ET ANALYSE DE CONTRIBUTION DES INGRÉDIES	
	HYPOTHÈSES ET MODÉLISATION DES INGRÉDIENTS REMODÉLI	
ANNEXE C :	HYPOTHÈSES ET MODÉLISATION D'UN ACCOMPAGNEMENT M	OYEN 52

Listes des tableaux

Tableau 1 : Liste des plats analysés	11
Tableau 2 : Le barème de notation	16
Tableau 3 : Inclusions et exclusions du système	18
Tableau 4 : Sources de données	21
Tableau 5 : Empreinte carbone, masse et note pour une portion de repas pour l'ensemble des plats analysés	25
Tableau 6 : Tableau récapitulatif des résultats obtenus pour les soupes	28
Tableau 7 : Tableau récapitulatif des résultats obtenus pour les plats chauds	30
Tableau 8 : Résultats de l'analyse de sensibilité par rapport à l'accompagnement choisi pour le hot chicken	52
Tableau 9 : Résultats de l'analyse de sensibilité par rapport à l'accompagnement choisi pour le poulet BBO	53

Listes des figures

Figure 1 : Étapes génériques d'un cycle de vie	.13
Figure 2 : Illustration des étapes du cycle de vie selon ISO 14040	.14
Figure 3 : Illustration des étapes d'inventaire et d'évaluation des impacts	.15
Figure 4 : Frontières du système à l'étude	.18
Figure 5 : Macaroni aux tomates, analyse de contribution par étape du cycle de vie	.26
Figure 6 : Macaroni aux tomates, analyse de contribution par ingrédient	.27
Figure 7 : Classement des soupes selon leur empreinte carbone totale par portion	.28
Figure 8 : Analyse de contribution des ingrédients à l'empreinte carbone totale des soupes végétaliennes	.29
Figure 9 : Analyse de contribution des ingrédients à l'empreinte carbone totale de la chaudrée Nouvelle Anglete	
Figure 10 : Classement des plats chauds selon leur empreinte carbone totale	.31
Figure 11 : Analyse de contribution des ingrédients à l'empreinte carbone totale du sandwich steak philly sel l'option choisie	
Figure 12 : Analyse de contribution des ingrédients à l'empreinte carbone totale des macaronis aux tomates et	

Liste des acronymes et abréviations

CIRAIG Centre international de référence sur l'analyse du cycle de vie et la

transition durable

PNUE Programme des Nations Unies sur l'Environnement

ACV Analyse du Cycle de Vie

ASCV Analyse Sociale du Cycle de Vie ACCV Analyse des Coûts du Cycle de Vie

GIEC Groupe d'experts intergouvernemental sur l'évolution du climat

IPCC Intergovernmental Panel on Climate Change
CHUM Centre Hospitalier de l'Université de Montréal

ICV Inventaire du cycle de vie

GES Gaz à Effet de Serre

ISO Organisation internationale de normalisation

PDF « Potentially Disappeared fraction of species » (fraction des espèces

susceptible de disparaître)

PRG Potentiel de Réchauffement Global

GWP Global Warming Potential

1 Mise en contexte

Dans le cadre de son plan de développement durable et de ses objectifs de réduction de ses émissions de gaz à effet de serre en vue d'atteindre la carboneutralité en 2040, le Centre Hospitalier de l'Université de Montréal (CHUM) souhaite quantifier et afficher l'empreinte carbone de son offre alimentaire pour sensibiliser ses usagers à l'empreinte carbone de leur alimentation, développer un plan d'action pour réduire l'empreinte carbone de ses services alimentaires et ultimement pouvoir quantifier les résultats concrets de ses actions.

Ce projet pilote vise à développer un concept d'étiquetage de l'empreinte carbone des plats servis à la cafétéria du CHUM. Dans ce cadre, le CIRAIG a été mandaté pour quantifier l'empreinte carbone de 28 plats servis avec une approche cycle de vie. Ce travail a été réalisé en collaboration avec l'OBNL PolyCarbone dont la mission était de développer le concept d'affichage en partenariat avec les services de communication du CHUM pour une communication informative efficace et positive sur l'empreinte carbone des aliments.

Objectifs

Quantifier l'empreinte carbone de 28 plats servis à la cafétéria du CHUM et établir un barème de notation pour caractériser et communiquer l'empreinte carbone des plats.

Terminologie utilisée

Un « plat » correspond typiquement à « une portion individuelle de repas » vendue par les services alimentaires du CHUM. La masse d'aliments et la qualité nutritionnelle des plats ne sont pas équivalentes d'un plat à l'autre et un plat ne constitue pas nécessairement un repas complet équilibré.

Une « portion individuelle de repas » correspond à une quantité d'aliments pouvant généralement constituer un plat principal ou un repas selon les habitudes de consommation des usagers du CHUM. Une portion individuelle de repas peut être constituée d'un plat et d'un accompagnement.

Les soupes sont des plats considérés comme des « **portions individuelles de repas** » mais ne constituent pas nécessairement un repas complet selon les habitudes de consommation des usagers du CHUM.

Plats étudiés

Les plats étudiés sont constitués d'un ensemble de soupes, de plats principaux de la table chaude et de plats du comptoir saveurs du monde de la cafétéria du CHUM. Ces plats ne constituent pas l'offre complète des services alimentaires du CHUM. Ils ont été sélectionnés afin d'être représentatifs de la diversité de l'offre alimentaire proposée.

Pour deux de ces plats, la quantification d'un accompagnement moyen composé de légumes et de riz a été ajoutée afin de pouvoir les comparer sur une base équivalente avec les autres plats principaux de la table chaude. De plus, l'un de ces plats est également proposé aux usagers en version végétarienne. Au total, 28 portions individuelles de repas ont été quantifiées.

À des fins de comparabilité, les plats ont été répartis selon deux grands groupes et sont présentés dans le

Tableau 1:

- Les soupes (12 portions individuelles de repas ont été quantifiées pour les soupes)
- Les plats de la table chaude et du comptoir saveur du monde (16 portions individuelles de repas) dont 4 plats végétariens.

Tableau 1 : Liste des plats analysés

Type de plat	Nom des recettes
Soupes	Crème de champignons
	Soupe poulet et nouilles
	Chaudrée Nouvelle Angleterre
	Soupe jardinière généreuse
	Chaudrée de maïs
	Crème de légumes
	Soupe tomate et riz
	Crème de tomates
	Potage chou-fleur fromage
	Soupe aux lentilles
	Potage des moissons
	Velouté de volaille au cari
Plats chauds	Spaghetti italien
	Poulet teriyaki
	Pâté saumoné
	Hot chicken*
	Gratin de bœuf au chou
	Sandwich steak Philly – version viande
	Sandwich steak Philly – version végétarienne
	Macaroni aux tomates
	Poulet BBQ*
	Boeuf hancho
	Bol chili légumineuse
	Bol chili viande
	Poulet aux saveurs du Maroc
	Combo indien
	Pâté chinois
	Boulettes suédoises

^{*} Plats pour lesquels l'empreinte carbone a été calculée avec un accompagnement moyen.

Limites

Ce projet pédagogique est une première étape pour sensibiliser les usagers de la cafétéria à l'empreinte carbone des produits alimentaires qu'ils consomment.

Les catégories d'impacts environnementaux autres que celle des changements climatiques ne sont pas considérées dans cette analyse.

Les aspects nutritionnels des plats servis par les services alimentaires du CHUM ne sont pas considérés dans cette analyse.

2 Méthodologie

L'approche cycle de vie

L'approche cycle de vie permet d'évaluer les impacts environnementaux d'un produit, service ou comportement sur toutes les étapes de leur cycle de vie (voir Figure 1).

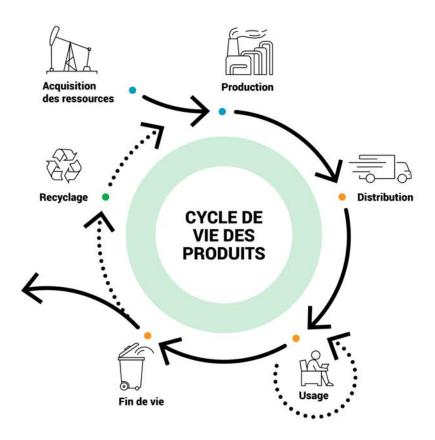


Figure 1 : Étapes génériques d'un cycle de vie

L'approche cycle de vie permet de quantifier une empreinte environnementale complète, et non juste focalisée sur une étape du cycle de vie. En plus de considérer la totalité du cycle de vie du produit qu'elle analyse, elle tient également compte du cycle de vie de tous les éléments nécessaires à l'utilisation de ce produit. Par exemple, l'impact d'un aliment ne se résume pas seulement à la production de l'aliment et au transport lors de sa distribution, mais inclut aussi les étapes de transformation, de conditionnement (emballage), de stockage (telles que la réfrigération) de préparation, de cuisson et de gestion des emballages et des déchets organiques en fin de vie.

L'analyse du cycle de vie

L'analyse du cycle de vie est une méthodologie standardisée par les normes ISO 14040 (ISO, 2006) et 14044 (ISO, 2006) qui permet d'évaluer les impacts environnementaux d'un produit ou service. Elle se réalise en plusieurs étapes (Figure 2) :

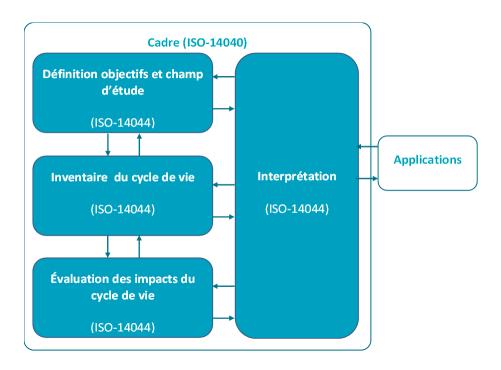


Figure 2 : Illustration des étapes du cycle de vie selon ISO 14040

- L'étape de définition de l'objectif et du champ de l'étude décrit, entre autres, les frontières du système étudié c'est-à-dire l'ensemble des étapes du cycle de vies incluses dans l'étude ainsi que sa fonction et son unité fonctionnelle. La fonction d'un système décrit le besoin auquel il doit répondre, par exemple « Transporter des passagers » pour un véhicule personnel. L'unité fonctionnelle correspond à la quantification de la fonction, par exemple « Transporter un passager sur 1000 km ». Elle permet ainsi de comparer différents systèmes à partir d'une même base de comparaison et est utilisée pour la mise à l'échelle des résultats.
- L'étape d'inventaire (ICV) consiste à modéliser le cycle de vie du système étudié afin de comptabiliser l'ensemble des flux économiques (flux de matière et d'énergie) et environnementaux (émissions vers l'environnement et ressources de l'environnement utilisées).
- L'étape d'évaluation des impacts permet de convertir les flux environnementaux en scores d'impact pour différents indicateurs environnementaux, dont les changements climatiques font partie.
- Enfin l'étape d'interprétation permet d'analyser les résultats pour répondre aux objectifs de l'étude.

La Figure 3 illustre les étapes d'inventaire et d'évaluation des impacts en analyse du cycle de vie.

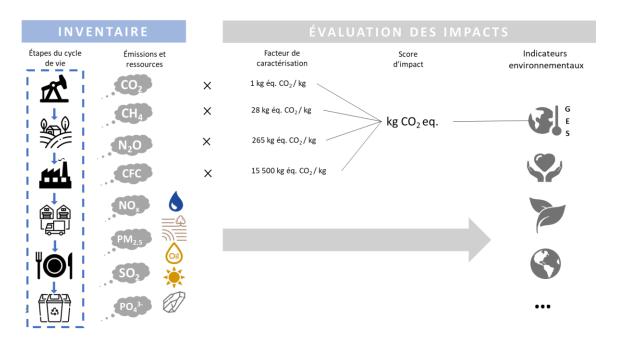


Figure 3 : Illustration des étapes d'inventaire et d'évaluation des impacts

Ce rapport n'est pas un rapport d'analyse du cycle de vie complet, mais il se base sur les principales étapes de la méthodologie d'analyse du cycle de vie.

L'empreinte carbone

Le calcul d'une empreinte carbone est un cas particulier d'analyse du cycle de vie ne prenant en compte que l'indicateur environnemental sur les changements climatiques. Pour la calculer, l'inventaire sur le cycle de vie (ICV) de toutes les émissions de gaz à effet de serre (GES) (tels que CO₂, N₂O, CH₄, CFC, etc.) est réalisé, et l'impact sur les changements climatiques seulement est calculé. Ce calcul est réalisé en utilisant la méthode GWP 100 du GIEC (IPCC, 2013), basé sur le pouvoir de réchauffement global (PRG ou GWP en anglais pour Global Warming Potential) à 100 ans. Le score d'impact est exprimé en kg d'équivalent CO₂ (kg éq. CO₂) et représente l'empreinte carbone du produit.

Le barème de notation

L'empreinte carbone de chaque plat, mesurée en kilogramme d'équivalent CO₂ (kg éq. CO₂), est ensuite reportée sur une échelle de notation à cinq paliers. Cette échelle est détaillée dans le Tableau 2.

Tableau 2 : Le barème de notation

Empreinte carbone par plat (kg éq.CO ₂)	Note
< 0.3	А
0.3 – 0.7	В
0.7 – 1.3	С
1.3 – 2.3	D
> 2.3	Е

Ce barème est inspiré du Carbone-Score de l'entreprise <u>Ansamble en Europe</u>. Le Carbone-Score propose une échelle de notation en cinq couleurs et cinq lettres exprimée à partir de résultats en gramme éq. CO₂/100 g d'aliment et dont les scores sont calculés à partir du référentiel de l'ADEME, Base Carbone, de FoodGES et les travaux d'Agribalyse (Colomb, et al., 2015). Le barème est adapté au CHUM avec la méthode développée pour Polytechnique Montréal (Blais-Gingras, Houssard, & Saunier, 2022)

À titre de référence, l'empreinte carbone d'un repas moyen pris à la maison au Québec est de 1,8 kg éq. CO_2 en excluant le gaspillage alimentaire et la gestion des déchets organiques (CIRAIG & Polycarbone, 2023). Ce chiffre élevé s'explique par la place significative de la viande et des produits laitiers dans la diète omnivore québécoise et par le fait que le repas moyen inclus aussi des desserts et des boissons qui ne sont pas pris en considération dans les portions individuelles des repas quantifiées pour le CHUM (Blanchet, Plante, & Rochette, 2009). Les plats du CHUM obtenant des notes entre A et C ont une empreinte carbone inférieure à la moyenne d'un repas moyen avec la diète omnivore actuelle des Québécois. Ces plats sont à privilégier pour réduire l'empreinte carbone de notre alimentation. Les plats obtenant la note E ont une empreinte carbone supérieure à la moyenne. Réduire leur consommation pourrait améliorer significativement l'impact environnemental de notre alimentation.

3 Champ de l'étude

Fonction et unité fonctionnelle

L'unité fonctionnelle est la base de comparaison de l'étude. Elle se traduit ici par une quantité de produit dans le contexte spécifique de l'étude. Pour être en mesure de comparer les plats servis par le CHUM entre eux, l'unité fonctionnelle suivante a été choisie :

Une portion individuelle de repas servie par les services alimentaires du CHUM en 23-24.

Cette unité fonctionnelle a été choisie afin que les consommateurs puissent facilement visualiser l'empreinte carbone de la portion qui leur est servie, contrairement à une unité fonctionnelle strictement massique (par ex. 100 g de nourriture) qui ne correspondrait pas forcément à la portion servie pour chaque plat.

En général, un plat chaud constitue une portion individuelle de repas, mais un accompagnement de riz et de légumes a été ajouté à plusieurs des plats chauds du menu du CHUM (plats marqués d'une * dans le Tableau 1) qui peuvent soit être vendus seuls, soit avec un accompagnement de façon à constituer un repas complet et à pouvoir comparer les plats chauds sur une base équivalente. Les résultats avec accompagnement sont présentés dans la suite de ce rapport, mais une analyse de sensibilité sur l'accompagnement est présentée en annexe.

Par ailleurs, une soupe est considérée comme une portion individuelle de repas mais ne représente pas nécessairement un repas complet.

Frontières du système

Les frontières du système permettent d'indiquer quelles étapes du cycle de vie sont prises en compte dans l'étude. Certaines étapes du cycle de vie peuvent être incluses ou exclues selon les objectifs de l'étude, les limites de disponibilité des données ou les limites inhérentes au budget d'étude. Les étapes incluses et exclues (en pointillé) sont schématisées dans la Figure 4.

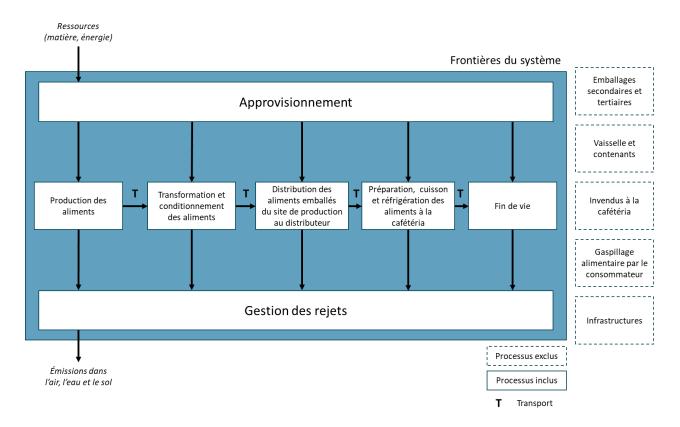


Figure 4 : Frontières du système à l'étude

Le Tableau 3 présente plus en détail les processus inclus et exclus dans le système étudié. Les étapes du cycle de vie regroupent plusieurs processus ou sous-processus détaillés dans le tableau.

Tableau 3 : Inclusions et exclusions du système

Étapes du cycle de vie	Activité	Commentaires
Production Inclus toutes les étapes du cycle de vie de la production de l'aliment jusqu'au distributeur	Production des aliments	Inclus. Elle tient compte de toutes les opérations nécessaires à la culture et à l'élevage des produits alimentaires du champ à la sortie de la ferme et des spécificités reliées aux zones géographiques de production (CIRAIG & Polycarbone, 2023).
	Transformation et conditionnement des aliments	Partiellement inclus. Les aliments en conserve ou surgelés ne sont pas inclus pour cette version de la base de données (CIRAIG & Polycarbone, 2023).
	Distribution des aliments du site de production au distributeur	Inclus. La distance de transport considérée pour chaque ingrédient est basée sur la moyenne du marché québécois (CIRAIG & Polycarbone, 2023).

	alimentaire	
	Fin de vie des pertes alimentaires sur la chaine d'approvisionnement (production, transformation, distribution)	Inclus. Des quantités d'aliments perdus ou gaspillés sont considérées lors des étapes de production des aliments, de leur transport jusqu'au lieu de transformation et de leur distribution (CIRAIG & Polycarbone, 2023).
Emballages Inclus la production et la fin de vie des emballages	Production des emballages primaires	Inclus. Elle tient compte de toutes les étapes d'extraction des matières premières jusqu'au produit fini pour les matériaux d'emballage typiquement utilisés pour chaque groupe d'aliment (CIRAIG & Polycarbone, 2023). Cette étape est néanmoins surestimée car elle est basée sur la modélisation d'emballages en portions individuelles et non la modélisation d'emballage en vrac pour des services alimentaires.
	Production des emballages secondaires et tertiaires	Exclu. L'empreinte carbone des emballages secondaires (emballage regroupant plusieurs unités du produit, par ex. une boîte en carton) et tertiaires (emballage permettant de transporter une grande quantité de produit, par ex. une palette) n'est pas modélisée (CIRAIG & Polycarbone, 2023). Elle est considérée comme négligeable.
	Transport des emballages	Inclus. Le transport de l'emballage est inclus pour toutes les étapes du cycle de vie, excepté pour l'étape de transport entre le distributeur et la cafétéria : seule la masse des aliments sans emballage est considérée. Cependant, la masse des emballages étant très faible par rapport à celle des aliments, leur exclusion a un impact négligeable sur les résultats.
	Fin de vie des emballages	Inclus. La fin de vie des emballages est répartie entre le recyclage (55%) et l'enfouissement des matières (45%). Le processus représente la fin de vie générique des emballages alimentaires sur le marché québécois (CIRAIG & Polycarbone, 2023).
Transport Inclus le transport du distributeur à la cafétéria.	Transport des aliments	Inclus. Représente uniquement l'étape de transport entre le distributeur et la cafétéria (CIRAIG & Polycarbone, 2023). Les autres opérations de transport sont incluses dans les étapes de production et de transformation.

Préparation et réfrigération	Préparation, cuisson et réfrigération des aliments	Inclus. La consommation relative à la préparation des aliments à la cafétéria, y compris le stockage des aliments, la cuisson et le lavage de la vaisselle utilisée dans la cuisine pour la préparation des repas (CIRAIG & Polycarbone, 2023).	
Fin de vie des pertes Inclus le traitement de fin de vie des pertes alimentaires	Fin de vie des pertes alimentaires	Inclus. Représente le traitement de fin de vie des pertes alimentaires, c'est-à-dire les matières organiques résiduelles qui constituent la partie non comestible des aliments (peau, os, fans) (CIRAIG & Polycarbone, 2023)	
Utilisation	Vaisselles et contenants	Exclu. Non sélectionné dans le périmètre de l'étude. L'ACV de la vaisselle réalisée à Polytechnique Montréal (Saunier et al., 2017) a montré que cette étape est peu contributrice aux impacts des services alimentaires.	
Gaspillage et invendus	Gaspillage alimentaire par le consommateur	Exclu. Non sélectionné dans le périmètre de l'étude. Ce choix se justifie par l'objectif du projet qui est de renseigner les usagers de la cafétéria sur l'empreinte carbone des plats servis. Néanmoins compte tenu de l'importance significative du gaspillage dans les cafétérias il serait intéressant d'ajouter ce volet aux itérations futures du projet.	
	Invendus à la cafétéria	Exclu. Part des aliments non vendus qui sont transportés pour être redistribués à des banques alimentaires ou associations. Constitue une limite de l'étude et une possibilité d'amélioration future.	
Infrastructures	Cycle de vie des infrastructures	Exclu. Les infrastructures désignent les bâtiments et les machines. Elles contribuent généralement à moins de 1% du score d'impact sur tout le cycle de vie d'un produit.	

Données

Le Tableau 4 présente les sources pour chaque catégorie de données utilisées dans l'étude.

Tableau 4 : Sources de données

Données	Sources	Commentaires
Recettes	CHUM	Les menus, la liste et la quantité exacte des ingrédients utilisés dans les recettes, la masse des portions de chaque plat, les fournisseurs de chaque ingrédient et la liste des ingrédients plus détaillée de certains ingrédients préparés (par exemple, les sauces) ont été fournis par les services alimentaires du CHUM.
Production	Base de données d'inventaire du cycle de vie de l'alimentation québécoise (CIRAIG & Polycarbone, 2023)	La majeure partie des inventaires du cycle de vie de ces ingrédients est tirée de cette base de données.
	Autres articles scientifiques (Clune, Crossin, & Verghese, 2017) et bases de données (Petersson, et al., 2021)	Données de la littérature utilisées pour modéliser certains ingrédients (notamment les poissons et crustacés) non disponibles dans la base de données québécoise (CIRAIG & Polycarbone, 2023).
Transport	CHUM	Le CHUM a fourni des informations sur ses fournisseurs afin de pouvoir calculer les distances de livraison.
	Base de données ecoinvent v 3.6 cut-off (Wernet, et al., 2016)	Le processus « transport, freight, lorry with refrigeration machine, 7.5-16 ton, EURO5, R134a refrigerant, cooling market for transport » de ecoinvent a été utilisé en adaptant la distance parcourue avec les données du CHUM.
Autres étapes du cycle de vie (emballages, préparation et réfrigération, fin de vie des pertes)	Base de données d'inventaire du cycle de vie de l'alimentation québécoise (CIRAIG & Polycarbone, 2023)	Données directement utilisées de la base de données. Toutes les précisions sur les sources de données utilisées pour chaque étape du cycle de vie sont disponibles dans la documentation de la base de données.

Hypothèses générales, calculs et limites

La majorité des données utilisées pour cette étude sont tirées de la base de données d'ICV de la consommation québécoise – axe alimentation version 0.1.6 (CIRAIG & Polycarbone, 2023), désignée ci-

après par BD ICV, qui comprend plusieurs limites. Elle est toutefois la base de données la plus représentative de la consommation alimentaire des Québécois à ce jour. Certaines données ont été adaptées pour permettre une modélisation plus spécifique au cadre d'étude. Par ailleurs, l'étude a également permis d'améliorer la modélisation de certains jeux de données.

Les processus utilisés sont pour la plupart basés sur la valeur moyenne de provenance (locale et importée) selon les volumes du marché québécois moyen, mais il n'est pas possible pour l'instant de distinguer l'impact d'un plat local par rapport à un plat non-local.

Principes généraux de modélisation

À chaque plat est associée une recette, c'est-à-dire une liste d'ingrédients ajoutés en quantité déterminée pour obtenir une portion donnée. Chaque ingrédient est modélisé et leurs empreintes carbone sont sommées et mises à l'échelle d'une portion pour obtenir l'empreinte carbone totale d'une portion individuelle de repas.

Si l'ingrédient est déjà disponible dans la BD ICV, les données sont directement mises à l'échelle de la recette, excepté pour la phase de transport qui est ajustée selon les données spécifiques de la cafétéria du CHUM (voir Tableau 4, ligne « Transport »).

Si l'ingrédient n'est pas disponible dans la BD ICV, il est nécessaire de chercher d'autres données permettant de le modéliser. Deux cas de figure se présentent :

- un autre ingrédient très proche disponible dans la base de données et dont l'empreinte carbone est similaire peut être choisi pour le modéliser ;
- l'ingrédient doit être remodélisé à l'aide de valeurs trouvées dans la littérature scientifique car aucun autre ingrédient disponible dans la base de données n'est acceptable. Ces ingrédients sont désignés par l'appellation « ingrédients remodélisés ». Les données utilisées pour les modéliser sont disponibles en Annexe B.

Critère de coupure

Tous les ingrédients ont été modélisés quel que soit leur masse, mais un critère de coupure a été appliqué dans la présentation des résultats pour les ingrédients dont la masse représente moins de 2% de la masse totale du plat. Ces ingrédients n'apparaissent pas dans les tableaux de résultats massiques par portion mais leur masse est comptabilisée dans la masse totale de la portion. De la même façon, l'empreinte carbone de chaque ingrédient a été quantifiée selon les frontières définies à la Figure 4 mais les ingrédients dont l'empreinte carbone représente moins de 2% ont été agrégés sous l'appellation « autre » dans les graphiques de contribution de la section résultats.

Prise en compte de la variation de masse à la cuisson

Lors de la préparation du plat, les aliments peuvent subir des variations de masse liées à un ajout ou une perte d'eau. Par exemple, lors de la cuisson des pâtes, la masse des pâtes crues achetées à l'épicerie est multipliée par trois en raison de l'absorption d'eau à la cuisson. À l'inverse, la cuisson de la viande entraîne généralement une perte de masse liée à une perte d'eau. Ainsi, on distingue la masse de l'ingrédient acheté, de celle de l'ingrédient « prêt-à-manger », désignant sa masse après préparation. La masse des portions affichée dans les résultats est calculée à partir de la masse des aliments « prêt-à-manger » et représente la masse de la portion servie. Cette information est donnée par le CHUM. L'empreinte carbone

est cependant calculée en fonction des masses des ingrédients achetés, de façon à correspondre au facteur d'impact disponible dans la BD ICV.

Proxys utilisés

3.1.1.1 Herbes et épices

Les épices non disponibles dans la base de données ont été remplacées par du sel. La masse des herbes sèches n'est pas la même que celle des herbes fraîches, mais elle est considérée équivalente ici compte tenu des faibles quantités utilisées.

3.1.1.2 Fromage

En raison des fortes différences d'empreinte carbone liées à l'affinage du fromage, une distinction est faite entre les fromages à pâte dure et les fromages à pâtes molles.

3.1.1.3 Poissons et fruits de mer

La version actuelle de la base de données d'inventaire du cycle de vie de la consommation québécoise a une résolution faible pour les ingrédients de type poisson ou fruit de mer. Les données pour ces ingrédients ont été affinées en utilisant d'autres bases de données plus précises pour ces ingrédients (voir Tableau 4, ligne « Production »).

Gaspillage alimentaire

Le gaspillage alimentaire à la cafétéria du CHUM n'est pas pris en considération. Cependant, toutes les pertes et le gaspillage en amont sur la chaine d'approvisionnement sont considérés. Les auteurs Fusi et al. (2016) soulèvent dans leur étude qu'une portion non négligeable peut être gaspillée dans un service de traiteur ou une cafétéria, et citent notamment une étude italienne de Risteco réalisée en 2006 dans des écoles à Turin et où 27,5% des assiettes étaient non servies et/ou leur contenu gaspillé (Fusi, Guidetti, & Azapagic, 2016). Dans une étude préliminaire récente, le CIRAIG a évalué que le gaspillage alimentaire réalisé par le citoyen pour des repas pris à la maison représenterait 17% de l'empreinte carbone de l'alimentation au Québec (Houssard et al. 2022). L'ajout de la composante du gaspillage constituerait donc une possibilité d'amélioration significative du modèle et un bel axe de sensibilisation pour quantifier l'empreinte carbone des repas consommés à la cafétéria et les impacts du gaspillage alimentaire.

Évaluation des impacts du cycle de vie

Une seule catégorie d'impact est considérée dans cette étude, celle des changements climatiques. La méthode utilisée pour calculer ce score d'impact est celle de l'IPCC (IPCC, 2013). Elle considère le potentiel de réchauffement global des gaz à effet de serre (GES) sur un horizon de 100 ans selon l'intensité de forçage radiatif des gaz à effet de serre (CO₂, CH₄, N₂O, etc.) par rapport à celui du CO₂ qui constitue la référence. Par exemple, le méthane (CH₄) a un potentiel de réchauffement climatique 28 fois plus élevée que le CO₂ sur un horizon de 100 ans (IPCC, 2013). L'unité utilisée pour exprimer le score d'impact sur les changements climatiques est le kg éq. de CO₂. Les résultats d'impacts potentiels sur les changements climatiques sont calculés en utilisant calculateur automatisé développé avec PolyCarbone.

4 Résultats

Cette section présente les résultats obtenus pour le calcul de l'empreinte carbone des soupes et plats principaux servis au CHUM en 23-24. Les résultats sont d'abord analysés de manière générale puis de manière détaillée pour chaque groupe de plats.

Résultats généraux

Le Tableau 5 donne le détail de l'empreinte carbone calculée pour une portion individuelle de repas de chaque plat, ainsi que la masse de la portion retenue et la note associée.

Dans l'ensemble du menu, sept portions individuelles de repas obtiennent la note A. Elles correspondent à des soupes qui contiennent une grande proportion d'eau. En revanche, six portions individuelles de repas obtiennent la note de E : toutes contiennent de la viande de bœuf.

Plus généralement, on remarque que les plats végétariens et végétaliens ont tendance à avoir une plus faible empreinte carbone que les plats contenant de la viande. Les soupes végétariennes qui contiennent des produits laitiers (exemple : potage chou-fleur-fromage) performent moins bien que les soupes qui n'en contiennent pas, et ont une empreinte carbone plus élevée que la soupe contenant de la viande blanche (soupe poulet et nouilles). Les plats contenant du poisson ont généralement une empreinte carbone élevée (la chaudrée de la Nouvelle Angleterre a une empreinte élevée parmi les soupes, le pâté saumoné parmi les plats chauds). Les plats contenant du bœuf présentent les empreintes carbone les plus élevées, excepté le plat de spaghetti italien qui en contient très peu.

Le plat obtenant la meilleure empreinte carbone par portion est la soupe jardinière (80 g éq. CO₂) et le plat ayant la plus grande empreinte carbone par portion est le sandwich steak philly (version viande) (5.216 kg éq. CO₂, environs 65 fois plus impactant que la soupe jardinière). Il y a un écart de 410 g entre la plus petite portion (pâté saumoné, 190 g) et la plus grande (poulet teriyaki, 600 g).

Tableau 5 : Empreinte carbone, masse et note pour une portion de repas pour l'ensemble des plats analysés

n des recettes	Empreinte carbone totale par portion [kg éq. CO2]	Masse de la portion [g]	Note
Soupe jardinière généreuse	0,080	240	Α
Crème de champignons	0,097	240	Α
Soupe poulet et nouilles	0,106	240	Α
Soupe tomate et riz	0,114	240	Α
Soupe aux lentilles	0,122	300	Α
Chaudrée de maïs	0,178	240	Α
Crème de légumes	0,267	240	Α
Velouté de volaille au cari	0,306	300	В
Potage des moissons	0,362	300	В
Crème de tomates	0,462	240	В
Potage chou-fleur fromage	0,489	300	В
Sandwich steak philly - Tofu	0,573	260	В
Hot chicken	0,719	390	С
Chaudrée Nouvelle Angleterre	0,744	300	С
Macaroni aux tomates	0,905	340	С
Spaghetti italien	0,937	220	С
Bol chili légumineuse	1,010	520	С
Poulet BBQ	1,045	590	С
Poulet aux saveurs du Maroc	1,122	350	С
Combo indien	1,122	575	С
Poulet teriyaki	1,305	600	D
Pâté saumoné	1,490	190	D
Bol chili viande	2,315	520	Е
Gratin de bœuf au chou	2,315	265	Е
Pâté chinois	2,841	250	Е
Boulettes suédoises	3,121	200	Е
Boeuf hancho	4,739	520	Е
Sandwich steak philly - viande	5,216	260	Е

Deux analyses de contribution sont réalisées pour chaque plat. Dans les paragraphes suivants, ces deux analyses sont illustrées pour le plat de macaroni aux tomates.

Contribution des étapes du cycle de vie

Le graphique suivant (Figure 5) présente la contribution des différentes étapes du cycle de vie à l'empreinte carbone finale du plat pour les macaronis aux tomates.

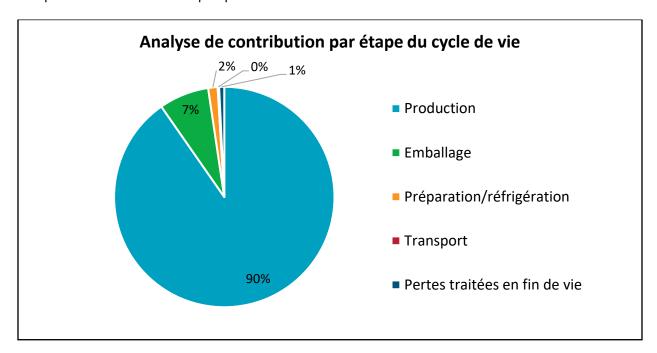


Figure 5 : Macaroni aux tomates, analyse de contribution par étape du cycle de vie

La contribution de chaque étape du cycle de vie est donnée en pourcentage de l'empreinte carbone totale. Ce graphique illustre des tendances qui sont observées pour l'ensemble des plats analysés : l'étape de production est l'étape qui contribue le plus à l'empreinte carbone du plat en contribuant à au moins 65 % de l'empreinte carbone totale pour tous les plats analysés, et plus de 80 % pour la grande majorité (voir Tableau 3 pour le détail sur les processus inclus dans l'étape de production). Ainsi, les différences entre les plats s'expliquent par les différences liées à la production des ingrédients qui les composent.

Les graphiques d'analyse de contribution par étape du cycle de vie étant très similaires pour l'ensemble des plats analysés, ils ne sont pas fournis dans la suite de ce rapport. Toutefois, ces graphiques sont disponibles sur demande.

Contribution par ingrédient

	g	%
Macaroni aux tomates	340	100%
Tomates concassées	130	38%
Macaroni	121	36%
Mozzarella	25	7%
Cheddar doux	21	6%
Tofu nature	20	6%
Tofu soyeux	19	6%

Macaroni aux tomates, 0.90kg éq. CO2/portion

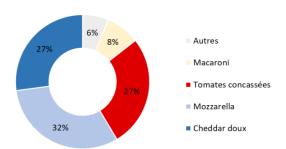


Figure 6 : Macaroni aux tomates, analyse de contribution par ingrédient

La Figure 6 présente la composition du plat de macaroni aux tomates et la contribution des différents ingrédients à l'empreinte carbone finale du plat.

La contribution de chaque ingrédient est donnée en pourcentage de l'empreinte carbone totale. La contribution d'un ingrédient comprend toutes les étapes du cycle de vie (production, emballage, préparation/réfrigération, transport et pertes traitées en fin de vie) pour cet ingrédient. La catégorie « Autres » regroupe l'ensemble des ingrédients qui contribuent à moins de 2 à 5 % de l'empreinte carbone totale du plat.

Le graphique de contribution par ingrédient permet de mieux identifier les ingrédients qui contribuent le plus à l'empreinte carbone de chaque plat, notamment à cause de différences à l'étape de production (voir section ci-dessus). Au vu du nombre élevé de plats analysés, ces figures ne sont pas données pour tous les plats dans le corps du rapport, mais disponibles en annexe (Annexe A).

Les sections suivantes présentent les analyses des empreintes carbone des portions individuelles de repas de chaque plat détaillées par groupe de plats.

Les soupes

Chaque jour, les usagers de la cafétéria se voient proposer trois soupes différentes. Dans cette étude, 12 soupes ont été analysées. Les soupes contiennent une grande proportion d'eau (entre 38 % pour le potage chou-fleur fromage et 76 % pour la soupe poulet et nouilles). La plupart des soupes sont végétaliennes (soupe jardinière généreuse et soupe tomate et riz) ou végétariennes, et trois soupes contiennent de la viande ou du poisson : la soupe poulet et nouilles et le velouté de volaille contiennent du poulet et la chaudrée Nouvelle Angleterre contient des fruits de mer.

Nom des recettes	Empreinte carbone totale par portion [kg éq. CO2]	Masse de la portion [g]	Empreinte carbone totale pour 100 g [kg éq. CO2/100g]	Note
Soupe jardinière généreuse	0,080	240	0,033	Α
Crème de champignons	0,097	240	0,040	Α
Soupe poulet et nouilles	0,106	240	0,044	Α
Soupe tomate et riz	0,114	240	0,048	Α
Soupe aux lentilles	0,122	300	0,041	Α
Chaudrée de maïs	0,178	240	0,074	Α
Crème de légumes	0,267	240	0,111	Α
Velouté de volaille au cari	0,306	300	0,102	В
Potage des moissons	0,362	300	0,121	В
Crème de tomates	0,462	240	0,192	В
Potage chou-fleur fromage	0,489	300	0,163	В
Chaudrée Nouvelle Angleterre	0,744	300	0,248	С

Tableau 6 : Tableau récapitulatif des résultats obtenus pour les soupes

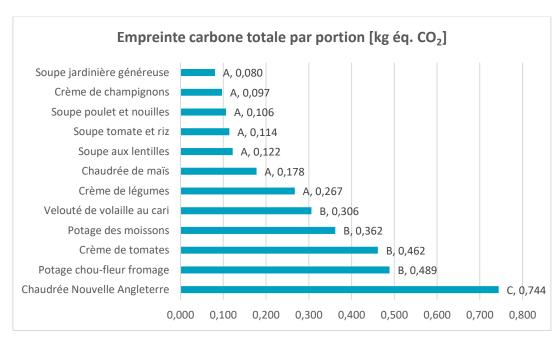


Figure 7: Classement des soupes selon leur empreinte carbone totale par portion

Les masses des portions de soupe varient peu, entre 240 g et 300 g. La soupe ayant l'empreinte carbone par portion la plus faible est la soupe jardinière généreuse, avec une empreinte carbone de 0.08 kg éq. CO₂. La soupe obtenant l'empreinte carbone la plus élevée est la chaudrée Nouvelle Angleterre avec une empreinte carbone de 0.74 kg éq. CO₂.

La soupe jardinière généreuse est végétalienne, ce qui explique sa faible empreinte carbone. En revanche, la soupe tomate et riz est elle-aussi végétalienne, mais a une empreinte carbone plus élevée. Son empreinte carbone est notamment plus importante que d'autres soupes contenant de la crème (crème de champignon) ou du poulet (soupe poulet et nouilles). Cela est notamment dû à l'utilisation de riz dans la recette, qui est à l'origine de la moitié de l'empreinte carbone de la soupe (Figure 8). En effet, le riz est un ingrédient lourd en carbone en raison de sa culture en rizières qui constituent des zones d'eaux stagnantes qui rejettent beaucoup de méthane (CH4) et d'oxyde nitreux (N2O), deux GES au pouvoir de réchauffement global respectivement 28 et 265 fois plus puissants que le dioxyde de carbone (CO₂).

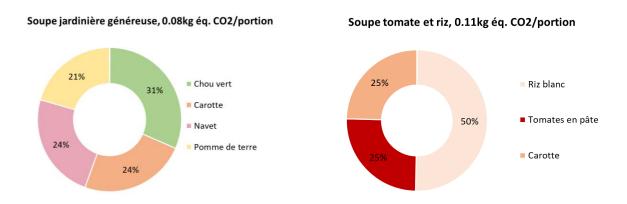


Figure 8 : Analyse de contribution des ingrédients à l'empreinte carbone totale des soupes végétaliennes

Bien qu'elle contienne du poulet, la soupe au poulet et nouilles a une empreinte carbone limitée. Elle est composée de seulement 4 % de poulet, mais ce dernier est à l'origine de 64 % de l'empreinte carbone totale de la soupe. En effet, le poulet a une empreinte carbone environs 4 fois plus importante que les légumes pour une masse équivalente. La faible empreinte carbone de la soupe s'explique aussi par sa forte proportion d'eau (76 %), la plus élevée parmi les soupes.

Les soupes contenant de la crème et/ou du fromage ont généralement une empreinte carbone plus importante que les soupes végétaliennes et au poulet. Le fromage, notamment, a une empreinte carbone environs 10 fois plus élevée que celle des légumes et deux fois plus élevée que celle du poulet : ce qui justifie que des soupes contenant du poulet puissent avoir une empreinte carbone plus faible que des soupes contenant du fromage. Cela s'explique par le fait qu'il faut en moyenne 10 litres de lait pour produire 1 kg de fromage et que l'empreinte carbone du fromage est directement liée à la quantité de lait nécessaire pour le produire (Sahu & Agarwal, 2021).

Enfin, la chaudrée Nouvelle Angleterre a une empreinte carbone particulièrement élevée par rapport aux autres soupes. D'une part, elle est délayée avec du lait mais ce sont surtout les fruits de mer (palourdes) et le poisson (goberge) qui alourdissent l'empreinte carbone de la soupe. Ils représentent presque la moitié de l'empreinte carbone finale du plat (Figure 9).

Chaudrée Nouvelle Angleterre, 0.74kg éq. CO2/portion



Figure 9 : Analyse de contribution des ingrédients à l'empreinte carbone totale de la chaudrée Nouvelle Angleterre

Les plats chauds

Chaque jour, les usagers de la cafétéria peuvent choisir différents plats chauds. Au total, 16 plats chauds ont été analysés dans cette étude. Le sandwich steak philly, est disponible en version viande ou végétarienne. Pour deux plats du menu (le poulet BBQ et le Hot chicken), les usagers de la cafétéria y ajoutent généralement un accompagnement. Un accompagnement moyen de riz et de légumes est donc inclus dans l'analyse de ces plats. Le détail du calcul de l'accompagnement moyen est disponible en annexe (Annexe C).

Tableau 7 : Tableau récapitulatif des résultats obtenus pour les plats chauds

Nom des recettes	Empreinte carbone totale par portion [kg éq. CO2]	Masse de la portion [g]	Note
Sandwich steak philly - Tofu	0,573	260	В
Hot chicken	0,719	390	С
Macaroni aux tomates	0,905	340	С
Spaghetti italien	0,937	220	С
Bol chili légumineuse	1,010	520	С
Poulet BBQ	1,045	590	С
Poulet aux saveurs du Maroc	1,122	350	С
Combo indien	1,122	575	С
Poulet teriyaki	1,305	600	D
Pâté saumoné	1,490	190	D
Bol chili viande	2,315	520	Е
Gratin de bœuf au chou	2,315	265	Е
Pâté chinois	2,841	250	Е
Boulettes suédoises	3,121	200	Е
Boeuf hancho	4,739	520	Е
Sandwich steak philly	5,216	260	Е

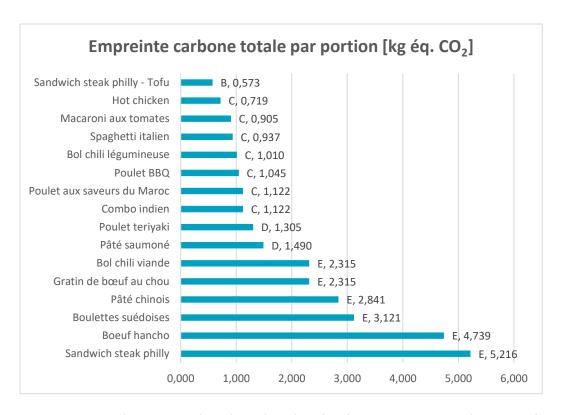


Figure 10 : Classement des plats chauds selon leur empreinte carbone totale

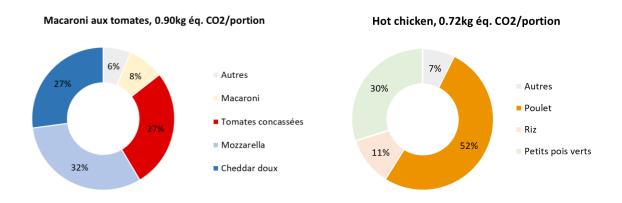
Les masses des portions de plats chauds varient entre 190 g (pâté saumoné) et 600 g (poulet teriyaki). Le plat chaud ayant l'empreinte carbone par portion la plus faible est le sandwich steak philly version végétarienne, avec une empreinte carbone de 0.57 kg éq. CO₂. Le plat chaud obtenant l'empreinte carbone la plus élevée est le sandwich steak philly version viande, avec une empreinte carbone de 5.22 kg éq. CO₂.

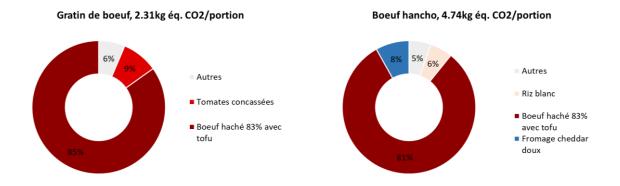
On peut noter que le sandwich steak philly est à la fois le plat ayant l'empreinte carbone la plus basse (version végétarienne) et la plus élevée (version viande). En effet, la protéine représente 40 % de la masse totale du sandwich, mais est responsable de 38% de l'empreinte carbone totale de l'option végétarienne et de 93 % de celle de l'option viande (Figure 11). La viande de bœuf a une empreinte carbone considérable. En effet, l'élevage des bovins entraîne notamment des émissions de méthane issu de la digestion des animaux, de protoxyde d'azote dans les fumiers et d'autres gaz à effet de serre émis par la production des aliments qui servent à les nourrir (Laisse, Baumont, Dusart, & Gaudré, 2019). En revanche, le tofu est produit à base de soya fermenté, légumineuse ayant une faible empreinte carbone (Mejia, Harwatt, Jaceldo-Siegi, & Sranacharoenpong, 2017). Cette comparaison souligne l'écart très élevé entre l'empreinte carbone du tofu et de la viande de bœuf : un kilogramme de bœuf a une empreinte carbone équivalente à 25 fois celle d'un kilogramme de tofu.

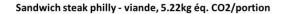
Sandwich steak philly - viande, 5.22kg éq. CO2/portion

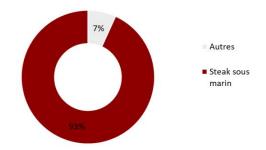
Figure 11 : Analyse de contribution des ingrédients à l'empreinte carbone totale du sandwich steak philly selon l'option choisie

À nouveau, on observe que le plat de macaroni aux tomates (plat végétarien) a une empreinte carbone supérieure au hot chicken (plat contenant du poulet). Plus de la moitié de l'empreinte carbone totale des plats est liée au fromage pour les macaronis aux tomates (59 %) et au poulet pour le hot chicken (52 %). Le fromage ayant une empreinte carbone environ deux fois plus importante que le poulet, le plat de macaroni aux tomates a une empreinte carbone finale plus élevée.




Figure 12 : Analyse de contribution des ingrédients à l'empreinte carbone totale des macaronis aux tomates et du hot chicken.


Bien que la portion de pâté saumoné soit la plus petite, son empreinte carbone est relativement élevée et il obtient la note D comme le poulet teriyaki, plat dont la portion est la plus grande. Cela s'explique notamment par l'empreinte carbone très élevée de la sole issue de la pêche par chalutage de fond (Sala et al. 2022).


Enfin, les trois plats ayant les empreintes carbone les plus élevées sont des plats contenant de la viande de bœuf. Cependant, la quantité de bœuf contenue dans les portions servies varie. La portion de bœuf hancho est deux fois plus importante environ que les portions de gratin de bœuf au chou et de sandwich steak philly (option viande) (respectivement 520 g, 265 g et 260 g respectivement). Ces deux premiers

plats (bœuf hancho et gratin de bœuf) contiennent environs 25 % de bœuf haché mélangé avec du tofu dans des proportions 83 %; -17 %. Ainsi, la quantité finale de viande de bœuf dans la portion de bœuf hancho est environs deux fois plus importante que la quantité de bœuf contenue dans la portion de gratin de bœuf, ce qui explique que l'empreinte carbone du bœuf hancho soit environ deux fois plus élevée que l'empreinte carbone du gratin de bœuf.

Enfin, le steak philly contient 40 % de viande hachée exclusivement composée de bœuf. Bien que la portion soit plus petite, la quantité de viande de bœuf servie est environ équivalente à la quantité de bœuf contenue dans le bœuf hancho (environs 100 g) après cuisson. L'empreinte carbone plus élevée du sandwich steak philly s'explique par le fait que la masse de viande utilisée avant cuisson est plus importante que celle du bœuf hancho.

5 Conclusions

Les objectifs du projet étaient de quantifier l'empreinte carbone et d'attribuer une note à 28 plats servis à la cafétéria du CHUM en 23-24. La quantification a été réalisée avec une approche cycle de vie. Le choix du système de notation sélectionné dans le projet attribue une lettre parmi A, B, C, D ou E en fonction de l'empreinte carbone de la portion servie. Les notes sont évaluées par portion individuelle de repas. Cette base de comparaison a été choisie pour permettre aux usagers d'identifier facilement l'empreinte carbone de ce qu'ils mangent. Toutefois, les qualités nutritionnelles et les masses des portions individuelles sont variables d'un plat à l'autre et d'autres bases de comparaison pourraient être testées dans le futur afin de mieux respecter l'équivalence fonctionnelle des aliments.

Comme beaucoup d'autres études dans le domaine de l'alimentation, les résultats démontrent que les principaux contributeurs à l'empreinte carbone de chaque plat sont les ingrédients, en particulier les protéines animales (viande, poisson et produits laitiers). Le transport, les emballages et la cuisson des aliments contribuent peu à l'empreinte carbone des plats.

Dans l'ensemble du menu, sept plats obtiennent la note A : la soupe jardinière généreuse, la crème de champignons, la soupe de poulet et nouilles, la soupe aux lentilles, la soupe tomate et riz, la chaudrée de maïs et la crème de légumes. Ces plats contiennent une grande proportion d'eau. En revanche, six plats obtiennent la note de E, correspondant à une empreinte carbone supérieure ou égale à 2.3 kg éq. CO₂ par portion : le bol de chili à la viande, le gratin de bœuf au chou, le pâté chinois, les boulettes suédoises, le bœuf hancho et le sandwich steak philly (option viande). Tous contiennent de la viande de bœuf.

Plus généralement, les plats végétariens ont une moins grande empreinte carbone que les plats avec de la viande. Cependant, les plats végétariens qui contiennent du fromage (par exemple, le plat de macaroni aux tomates) ont une empreinte carbone plus importante que certains plats contenant de la viande blanche.

Les résultats sont basés sur les données génériques de la base de données d'inventaire du cycle de vie de la consommation québécoise (version 0.1.6) développée par le CIRAIG en partenariat avec PolyCarbone (CIRAIG & Polycarbone, 2023). Cette base de données est la seule qui permet de refléter la réalité moyenne québécoise pour modéliser les processus des différentes étapes du cycle de vie de l'alimentation au Québec. Cette base de données est toutefois amenée à évoluer afin d'en améliorer la précision. La base de données sera enrichie au fur et à mesure des nouvelles itérations du projet.

La prise en compte du gaspillage alimentaire à la cafétéria du CHUM est pour l'instant exclue de l'analyse. Cela constitue un axe d'amélioration intéressant pour la quantification de l'empreinte carbone des services alimentaires du CHUM.

Réduire l'offre de plats à base de viande rouge, favoriser la végétalisation du menu et des actions de réduction du gaspillage pourrait être un levier significatif pour réduire l'empreinte carbone des services alimentaires du CHUM.

6 Références

- Blais-Gingras, L., Houssard, C., & Saunier, F. (2022). Projet d'affichage d'empreinte carbone à la cafétéria de Polytechnique Montréal; Phase pilote : Quantification de l'empreinte carbone des plats de l'été 2022. Montréal: CIRAIG.
- Blanchet, C., Plante, C., & Rochette, L. (2009). *La consommation alimentaire et les apports nutritionnels des adultes québécois.* Récupéré sur https://www.inspq.qc.ca/sites/default/files/publications/931_rapportnutritionadultes.pdf
- CIRAIG & Polycarbone. (2023). Base de données d'inventaire du cycle de vie de la consommation québécoise, Version 0.1.6.
- Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. *Journal of Cleaner Production*. doi:10.1016/j.jclepro.2016.04.082
- Colomb, V., Ait Amar, S., Basset Mens, C., Gac, A., Gaillard, G., Koch, P., . . . M.G. van der Werf, H. (2015). AGRIBALYSE®, the French LCI Database for agricultural products: high quality data for producers and environmental labelling. *OCL*. doi:https://doi.org/10.1051/ocl/20140047
- Favi, C., Germani, M., Landi, D., Mengarelli, M., & Rossi, M. (2018). Comparative life cycle assessment of cooking appliances in Italian kitchens. *Journal of Cleaner Production*. doi:https://doi.org/10.1016/j.jclepro.2018.03.140
- Fusi, A., Guidetti, R., & Azapagic, A. (2016). Evaluation of environmental impacts in the catering sector: the case of pasta. *Journal of Cleaner Production*, 146-160. doi:https://doi.org/10.1016/j.jclepro.2015.07.074
- Greffe, T., Blais-Gingras, L., Houssard, C., & Saunier, F. (2022). Projet d'affichage d'empreinte carbone à la cafétéria de Polytechnique Montréal : Quantification de l'empreinte carbone des plats de l'automne 2022. Montréal: CIRAIG.
- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press.
- ISO. (2006). *ISO 14040: Management environnemental Analyse du cycle de vie Principes et cadre.*Organisation internationale de normalisation.
- ISO. (2006). ISO 14044: Management environnemental Analyse du cycle de vie Exigences et lignes directrices. Organisation internationale de normalisation.
- Laisse, S., Baumont, R., Dusart, L., & Gaudré, D. (2019). L'efficience nette de conversion des aliments par les animaux d'élevage : une nouvelle approche pour évaluer la contribution de l'élevage à l'alimentation humaine. *INRAE Productions Animales*, 269 288. doi:10.20870/productions-animales.2018.31.3.2355

- Mejia, A., Harwatt, H., Jaceldo-Siegi, K., & Sranacharoenpong, K. (2017). Greenhouse Gas Emissions Generated by Tofu Production: A Case Study. *Journal of Hunger & Environmental Nutrition*, 1-12. doi:10.1080/19320248.2017.1315323
- Petersson, T., Secondi, L., Magnani, A., Antonelli, M. D., Valentini, R., Varotto, A., & Castaldi, S. (2021). SU-EATABLE LIFE: a comprehensive database of carbon and water footprints of food commodities. doi:10.6084/m9.figshare.13271111.v2
- Sahu, R., & Agarwal, T. (2021). *Challenges and Opportunities of Circular Economy in Agri-Food Sector, chapter Carbon Footprint of Raw Milk and Other Dairy Products.* Singapore: Springer.
- Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. *International Journal of Life Cycle Assessment*. doi:https://doi.org/10.1007/s11367

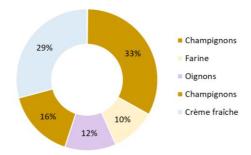
ANNEXE A:

COMPOSITION ET ANALYSE DE CONTRIBUTION DES INGRÉDIENTS À L'EMPREINTE CARBONE TOTALE D'UN PLAT

Cette annexe présente la composition (nature et masse d'ingrédients) ainsi que l'analyse de contribution des ingrédients à l'empreinte carbone totale des plats analysés.

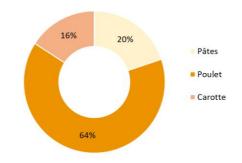
Les tableaux de composition présentent les ingrédients qui représentent au moins 2 % de la masse de la portion. Ainsi, certains ingrédients donnés dans la recette peuvent ne pas apparaître dans le tableau si leur masse n'est pas assez importante (épices, sauces...). Les masses des portions et les proportions des ingrédients sont basées sur les données communiquées par le CHUM. Pour rappel, l'empreinte carbone des plats est calculée par rapport à la masse de l'ingrédient avant préparation. Les masses données dans les tableaux de composition sont les masses des ingrédients dans l'assiette servie.

À l'instar du corps du rapport, les plats sont classés par groupe, tel que suit :

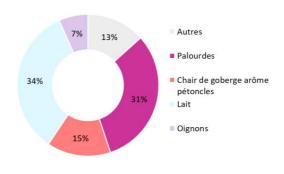

- Les soupes
- Les plats chauds

Pour rappel, la contribution d'un ingrédient comprend toutes les étapes du cycle de vie (production, emballage, préparation/réfrigération, transport et pertes traitées en fin de vie) pour cet ingrédient. La catégorie « Autre » regroupe les ingrédients contribuant à moins de 5 % de l'empreinte carbone totale du plat.

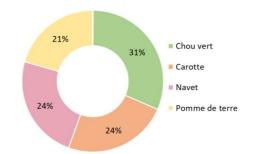
Les soupes


Crème de champignons	g 240	% 100%
Eau	126	52%
Champignons	44	18%
Champignons	21	9%
Eau froide	12	5%
Crème fraîche	9	4%
Oignons	7	3%
Farine	6	3%

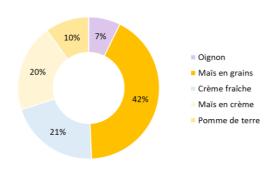
Crème de champignons, 0.10kg éq. CO2/portion


Soupe poulet et nouilles, 0.11kg éq. CO2/portion

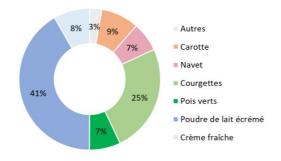
Soupe poulet et nouilles	g 240	% 100%
Eau	182	76%
Pâtes	30	12%
Carotte	12	5%
Poulet	10	4%


	g	%
Chaudrée Nouvelle Angleterre	300	100%
Lait	120	40%
Oignons	33	11%
Chair de goberge arôme pétoncles	33	11%
Palourdes	33	11%
Pomme de terre	26	9%
Carotte	17	6%
Farine	7	2%
Huile de canola	7	2%
Maïs en grains	7	2%
Pois verts	7	2%
Vin blanc	5	2%

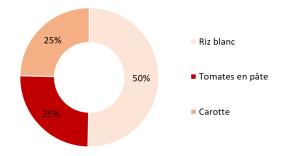
Chaudrée Nouvelle Angleterre, 0.74kg éq. CO2/portion


Soupe jardinière généreuse, 0.08kg éq. CO2/portion

Soupe jardinière généreuse	g 240	% 100%
Eau	164	68%
Chou vert	18	8%
Navet	18	7%
Carotte	18	7%
Pomme de terre	18	7%


Chaudrée de maïs, 0.18kg éq. CO2/portion

	g	%
Chaudrée de maïs	240	100%
Eau	103	43%
Maïs en grains	51	21%
Maïs en crème	36	15%
Pomme de terre	17	7%
Crème fraîche	13	6%
Oignon	8	4%

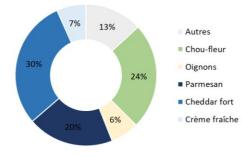

Crème de légumes, 0.27kg éq. CO2/portion

Crème de légumes	240	100%
Eau	149	62%
Carotte	21	9%
Courgettes	16	7%
Navet	16	7%
Pois verts	11	4%
Crème fraîche	9	4%
Poudre de lait écrémé	6	2%
Farine	5	2%

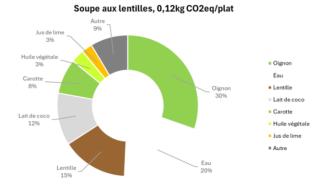
Soupe tomate et riz, 0.11kg éq. CO2/portion

Soupe tomate et riz	g 240	% 100%
Eau	161	67%
Riz blanc	38	16%
Carotte	28	12%
Tomates en pâte	8	3%

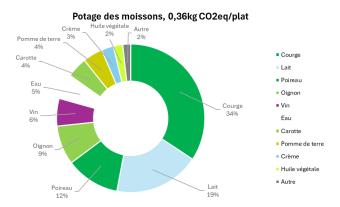
	g	%
Crème de tomates	240	100%
Jus de tomate	92	39%
Tomates concassées	76	32%
Eau	22	9%
Céleri	10	4%
Carotte	10	4%
Crème fraîche	9	4%
Poudre de lait écrémé	6	2%
Farine	6	3%
Huile de canola	4	2%
Tomates en pâte	4	2%

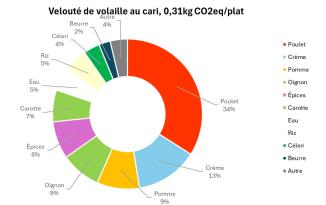

	10%	
24%		Autres
	30%	■ Tomates concassées
	3070	Jus de tomate

■ Poudre de lait écrémé

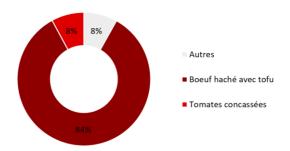

Crème de tomates, 0.46kg éq. CO2/portion

	g	%
Potage chou-fleur fromage	300	100%
Eau	114	38%
Chou-fleur	68	23%
Pomme de terre	23	8%
Oignons	21	7%
Cheddar fort	12	4%
Maïs en grains	11	4%
Pomme de terre	11	4%
Crème fraîche	11	4%
Carotte	9	3%
Parmesan	8	3%
Base bouillon poulet végétalien	5	2%

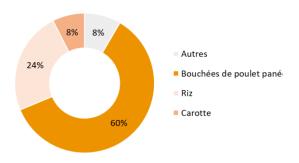

Potage chou-fleur fromage, 0.49kg éq. CO2/portion


	g	%
Soupe aux lentilles	300	100%
Eau	187	62%
Lentille	37	12%
Oignon	28	9%
Lait de coco	24	8%
Carotte	9	3%

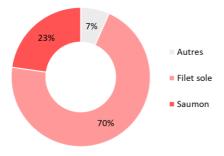
	g	%
Potage des moissons	300	100%
Eau	137	46%
Lait	33	11%
Courge	28	9%
Poireau	25	8%
Oignon	21	7%
Pomme de terre	16	5%
Carotte	14	5%
Vin	8	3%
Bouillon	7	2%


	g	%
Velouté de volaille au cari	300	100%
Eau	124	41%
Pomme	35	12%
Poulet	30	10%
Oignon	21	7%
Carotte	21	7%
Céleri	21	7%
Crème	18	6%
Riz	11	4%
Lait de coco	11	4%

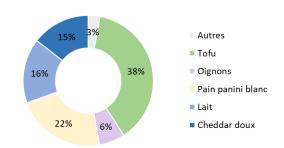
Les plats chauds


Cooch atti italian	g	% 100%
Spaghetti italien	220	100%
Pâtes	91	41%
Tomates concassées	50	23%
Boeuf haché avec tofu	41	19%
Eau	21	10%
Carotte	9	4%
Tomates en pâte	8	3%

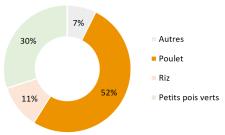
Spaghetti italien, 0.94kg éq. CO2/portion


% g Poulet teriyaki 600 100% 217 36% Bouchées de poulet panées 184 31% Carotte 97 16% Sauce terriyaki 10% 58 Vinaigre de riz 24 4%

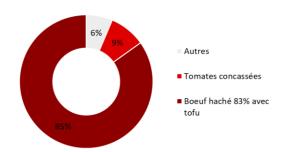
Poulet teriyaki, 1.31kg éq. CO2/portion


	g	%
Pâté saumoné	190	100%
Filet sole	54	28%
Saumon	42	22%
Eau	35	18%
Farine	17	9%
Graisse végétale	10	5%
Pomme de terre	8	4%
Eau	7	4%
Lait	5	2%
Oeufs	5	2%
Tomates en pâte	5	2%

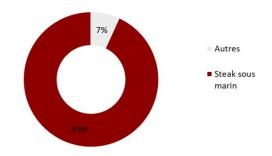
Pâté saumoné, 1.49kg éq. CO2/portion


	g	%
Sandwich steak philly - tofu	260	100%
Tofu	104	40%
Pain panini blanc	74	28%
Lait	30	12%
Oignons	17	7%
Champignons	17	7%
Cheddar doux	5	2%
Laitue iceberg	4	2%

Sandwich steak philly - tofu, 0.57kg éq. CO2/portion


	g	%
Hot chicken	440	100%
Petits pois verts	132	30%
Eau	95	22%
Poulet	77	18%
Riz	56	13%
Pain hamburger	35	8%
Eau	32	7%
Sauce à Hot chicken	13	3%

Hot chicken, 0.72kg éq. CO2/portion	


	g	%
Gratin de boeuf	265	100%
Tomates concassées	90	34%
Boeuf haché 83% avec tofu	67	25%
Chou vert	61	23%
Fromage mozzarella	15	5%
Riz blanc	15	6%
Oignons	9	3%
Tomates en pâte	5	2%

Gratin de boeuf, 2.31kg éq. CO2/portion

% g Sandwich steak philly - viande 260 100% Steak sous marin 104 40% Pain panini blanc 74 28% Lait 30 12% Oignons 17 7% Champignons 7% 17 Cheddar doux 5 2% Laitue iceberg 2%

Sandwich steak philly - viande, 5.22kg éq. CO2/portion

g % Macaroni aux tomates 340 100% Tomates concassées 130 38% Macaroni 121 36% Mozzarella 25 7%

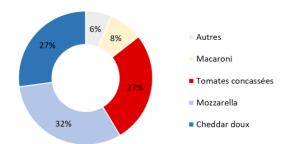
21

20

19

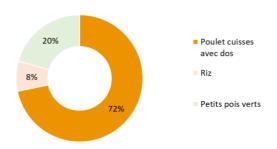
6%

6%

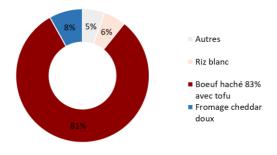

6%

Cheddar doux

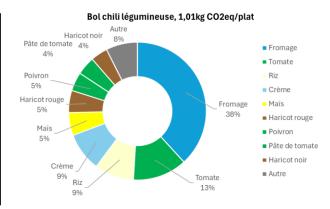
Tofu nature


Tofu soyeux

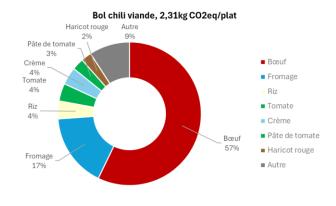
Macaroni aux tomates, 0.90kg éq. CO2/portion

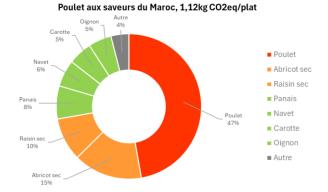

	g	%
Poulet BBQ	590	100%
Poulet cuisses avec dos	298	51%
Petits pois verts	151	26%
Eau	67	11%
Riz	64	11%
Ketchup	5	1%

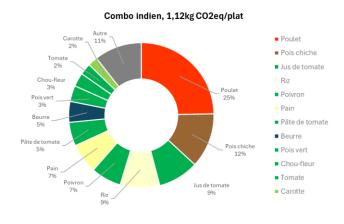
Poulet BBQ, 1.04kg éq. CO2/portion

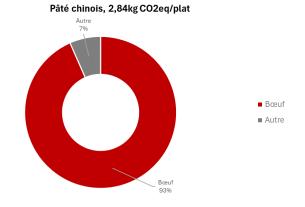


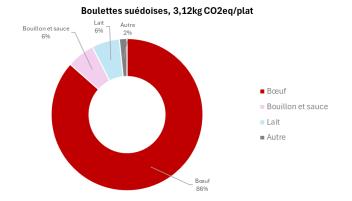
	g	%
Boeuf hancho	519	100%
Boeuf haché 83% avec tofu	141	27%
Riz blanc	136	26%
Eau	73	14%
Crème sure	30	6%
Fromage cheddar doux	30	6%
Tomates broyées	28	5%
Haricots noirs	19	4%
Maïs en grains	19	4%
Poivrons verts	14	3%
Eau	12	2%


Boeuf hancho, 4.74kg éq. CO2/portion


	g	%
Bol chili légumineuse	520	100%
Eau	127	24%
Tomate	78	15%
Riz	78	15%
Maïs	43	8%
Fromage	37	7%
Crème	37	7%
Haricot rouge	31	6%
Haricot noir	23	4%
Carotte	16	3%
Poivron	12	2%


	g	%
Bol chili viande	520	100%
Bœuf	84	16%
Eau	78	15%
Tomate	77	15%
Riz	52	10%
Haricot rouge	44	9%
Fromage	42	8%
Crème	42	8%
Maïs	37	7%
Haricot noir	26	5%
Pâte de tomate	12	2%


	g	%
Poulet aux saveurs du Maroc	350	100%
Poulet	116	33%
Panais	65	19%
Navet	53	15%
Carotte	47	13%
Oignon	36	10%
Abricot sec	16	5%


	g	%
Combo indien	575	100%
Pois chiche	82	14%
Pain	73	13%
Riz	67	12%
Jus de tomate	62	11%
Poulet	60	10%
Eau	50	9%
Carotte	24	4%
Chou-fleur	24	4%
Pois vert	24	4%
Poivron	20	4%
Mangue	20	3%
Tomate	18	3%

	g	%
Pâté chinois	250	100%
Bœuf	94	38%
Eau	74	30%
Maïs	60	24%
Pomme de terre	16	6%

	g	%
Boulettes suédoises	200	100%
Lait	84	42%
Bœuf	80	40%
Crème	16	8%
Eau	14	7%
Bouillon et sauce	6	3%

ANNEXE B : HYPOTHÈSES ET MODÉLISATION DES INGRÉDIENTS REMODÉLISÉS

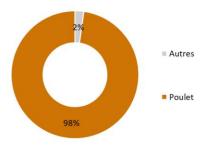
Cette annexe présente les hypothèses de modélisation pour les ingrédients remodélisés et les résultats obtenus pour chaque ingrédient. Les ingrédients remodélisés sont classés en deux catégories :

- les ingrédients de type « recette », modélisés de la même manière qu'un plat,
- les autres ingrédients non disponibles directement dans la BD ICV qu'il a fallu modéliser spécifiquement pour le projet.

Les ingrédients remodélisés « recette »

Les fiches des fournisseurs du CHUM précisent la nature et l'ordre de proportion des ingrédients qui entrent dans la composition des ingrédients complexes, mais pas leur quantité exacte. Ainsi, l'ensemble des ingrédients de type « recette » ont été modélisés à partir de recettes provenant d'autres sources, en vérifiant que la liste d'ingrédients corresponde suffisamment bien à la liste des ingrédients du fournisseur.

Bouchées de poulet pané


Hypothèses à partir de la recette du fournisseur¹ communiquée par le CHUM.

Hypothèses:

- Poulet (85% massique)
- Pâte (15% massique)
 - Eau (50% massique)
 - o Farine de blé (50% massique)

g % Poulet pané 100 100% Poulet 85 85% Pâte - Farine de blé 8 8% Pâte - eau 8 8%

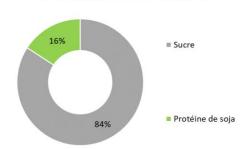
Poulet pané, 0.42kg CO2eq/100g

¹ Olymel. Morceaux de poulet panés Croque-Tonnerre. Communication personnelle, 5 juillet 2023.

Sauce teriyaki

Hypothèses à partir de la recette du fournisseur² communiquée par le CHUM.

Hypothèses:


- Sucre (50% massique)
- Eau (40% massique)
- Protéine de soya (10% massique)

 Sauce teriyaki
 100
 100%

 Sucre
 50
 50%

 Eau
 40
 40%

 Protéine de soja
 10
 10%


Sauce teriyaki, 0.52kg éq. CO2/100 g

Bœuf haché avec tofu

Hypothèses à partir des informations³ communiquées par le CHUM.

Boeuf haché avec tofu 100 100% Boeuf haché 75 75% Tofu 25 25%

Boeuf haché avec tofu, 2.06kg éq. CO2/100 g

² Jade Mountain Classique. Sauce teriyaki. Communication personnelle, 5 juillet 2023.

³ Centre Hospitalier de l'Université de Montréal (CHUM). Communication personnelle, 18 septembre 2023.

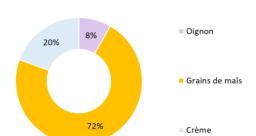
Crème de maïs

Recette disponible en ligne⁴ sélectionnée pour approximer les quantités des ingrédients transmis par le CHUM.

6%

5%

 g
 %


 Crème de maïs
 100
 100%

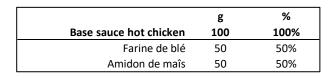
 Bouillon de poulet
 47
 47%

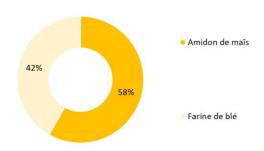
 Grains de maîs
 42
 42%

Crème

Oignon

Crème de maîs, 0.07kg éq. CO2/100 g


Base de sauce hot chicken


Hypothèses à partir de la recette du fournisseur⁵ communiquée par le CHUM.

6

5

Base sauce hot chicken, 0.15kg éq. CO2/100 g

⁴ Ricardocuisine. (2008, November 28). Crème de maïs | RICARDO. Ricardo. https://www.ricardocuisine.com/recettes/981-creme-de-mais

⁵ Berthelet. Mélange pour sauce sandwich chaud. Communication personnelle, 5 juillet 2023.

Concentré de tomates

On considère qu'il faut 1500g de tomates fraîches pour obtenir 600g de concentré⁶. L'empreinte de la production de la tomate est donc multipliée par 2.5 (1500/600). Les valeurs de la tomate dans la base de données sont prises comme référence. Seule la valeur de la production de la tomate est adaptée, les valeurs pour les autres étapes du cycle de vie restent inchangées.

Courgette, modifié

L'empreinte carbone de la courgette semble trop élevée dans la BD ICV en comparant sa valeur avec celles d'autres bases de données^{7,8}. La tomate ayant été raffinée dans la base de données, la valeur de la production de la courgette est remplacée par la valeur de la production de la tomate.

Poivron, modifié

L'empreinte carbone du poivron semble trop élevée dans la BD ICV en comparant sa valeur avec celles d'autres bases de données^{7,8}. La tomate ayant été raffinée dans la base de données, la valeur de la production du poivron est remplacée par la valeur de la production de la tomate.

Amidon de maïs

Le maïs en grains contient environ 73% massique d'amidon. La valeur de la production de maïs est multipliée par 1.37 (1/0.73). Les valeurs du maïs en grain dans la base de données sont prises comme référence. Seule la valeur de la production du maïs est adaptée, les valeurs pour les autres étapes du cycle de vie restent inchangées.

Lait en poudre

Le lait en poudre est produit en retirant l'eau du lait par évaporation. 1 kg de lait en poudre est produit à partir d'environ 10 L de lait liquide, soit 10.324 kg de lait (donnée de densité du lait : 1032,4 g/L). Les valeurs du lait dans la base de données sont prises comme référence et la valeur de l'empreinte carbone de la production de lait est multipliée par 10.324 pour obtenir la valeur de l'empreinte carbone de la production de poudre de lait. Seule la valeur de la production est adaptée, les valeurs pour les autres étapes du cycle de vie ne sont pas modifiées. À noter que cette modélisation présente une importante limite puisque le processus de séchage du lait est connu pour être très énergivore et pour contribuer significativement à l'empreinte carbone du lait.

Goberge, modifié

L'empreinte carbone de la goberge semble trop élevée dans la BD ICV en comparant sa valeur avec celles

⁶ Pâte de tomates / concentré de tomates – Fannelie.com. (2020, August 31). https://fannelie.com/pate-de-tomates-concentre-de-tomates/

d'autres bases de données ^{7,8}. La valeur de la production de la goberge dans la BD ICV est remplacée par l'empreinte carbone de la goberge de la base de données SU-EATABLE⁷.

Sole

L'empreinte carbone de la sole est ajoutée à la BD ICV. Le poisson est pris comme ingrédient de référence, et la valeur de la production du poisson est remplacée par l'empreinte carbone de la sole donnée dans la base de données SU-EATABLE⁷

⁷ Petersson, T., Secondi, L., Magnani, A., Antonelli, M. D., Valentini, R., Varotto, A., & Castaldi, S. (2021). SU-EATABLE LIFE: a comprehensive database of carbon and water footprints of food commodities. doi:10.6084/m9.figshare.13271111.v2

⁸ Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production. doi:10.1016/j.jclepro.2016.04.082

ANNEXE C : HYPOTHÈSES ET MODÉLISATION D'UN ACCOMPAGNEMENT MOYEN

Un choix d'accompagnement est offert indépendamment des plats à la cafétéria du CHUM. Cependant, un accompagnement n'a été modélisé que pour deux des plats chauds (le hot chicken et le poulet BBQ) en considérant les habitudes de consommation des usagers, qui ne consomment généralement pas ces plats seuls, mais avec un accompagnement, afin de répondre à l'unité fonctionnelle de l'étude (« Une portion individuelle de repas servie par les services alimentaires du CHUM en 23-24 »). Les autres plats du menu sont considérés généralement consommés seuls.

Le choix d'accompagnement varie tous les jours à la cafétéria. Selon le menu fourni par la cafétéria du CHUM, le hot chicken peut être accompagné au choix de purée de pomme de terre, de quartiers de pommes de terre ou de pois verts. Le poulet BBQ peut être accompagné de purée de pommes de terre, de riz pilaf ou de pois verts.

Plusieurs accompagnements ont été modélisés pour observer l'influence du choix d'accompagnement sur les résultats.

- Un accompagnement moyen a été modélisé avec un accompagnement composé à 1/3 de féculent, modélisé par du riz, et 2/3 de légumes, modélisés par des petits pois, pour respecter les proportions d'une assiette moyenne équilibrée.
- Un accompagnement constitué exclusivement de riz (portion moyenne considérée : 60 g sec, environ 170 g cuit).
- Un accompagnement constitué exclusivement de pommes de terre (portion moyenne considérée : 250 g).
- Un accompagnement constitué exclusivement de légumes (petits pois, portion moyenne considérée : 200 g).

Les résultats suivants montrent l'influence de l'ajout d'un accompagnement sur les deux plats considérés et la sensibilité des résultats à la composition de cet accompagnement.

Tableau 8 : Résultats de l'analyse de sensibilité par rapport à l'accompagnement choisi pour le hot chicken

Nom des recettes	Empreinte carbone totale par portion [kg éq. CO2]		Note
Hot chicken seul	0.423	253	В
Hot chicken (accompagnement moyen)	0.719	442	С
Hot chicken + riz	0.663	420	В
Hot chicken + pommes de terre	0.633	503	В
Hot chicken + légumes	0.746	453	С

Tableau 9 : Résultats de l'analyse de sensibilité par rapport à l'accompagnement choisi pour le poulet BBQ

Nom des recettes	Empreinte carbone totale par portion [kg éq. CO2]		Note
Poulet BBQ seul	0.749	400	С
Poulet BBQ (accompagnement moyen)	1.045	590	С
Poulet BBQ + riz	0.989	570	С
Poulet BBQ + pommes de terre	0.959	650	С
Poulet BBQ + légumes	1.072	600	С

L'accompagnement ayant l'empreinte carbone la plus faible est l'accompagnement de pommes de terre et celui ayant l'empreinte carbone la plus élevée est celui composé de légumes. Ici, l'accompagnement de riz a une empreinte carbone relativement limitée car la quantité de riz servie est plus faible que pour les autres accompagnements. Bien que la quantité de pommes de terre soit la plus importante, la très faible empreinte carbone des pommes de terre en fait l'accompagnement ayant l'empreinte carbone la plus faible.

On observe que la note attribuée peut changer avec l'ajout d'un accompagnement ou non et selon l'accompagnement choisi pour le hot chicken (lettre B ou C selon le cas). Cependant, l'accompagnement n'a pas d'influence sur la note pour le poulet BBQ.

Dans les deux cas, la comparaison du plat avec et sans l'accompagnement montre que l'ajout de l'accompagnement fait varier de manière significative (de plus de 20 %) l'empreinte carbone du plat. L'accompagnement augmente l'empreinte carbone du hot chicken d'au moins 50%, et d'au moins 28% pour le poulet BBQ.

Cependant, même avec accompagnement, le poulet reste le plus gros contributeur à l'empreinte carbone totale du plat : entre 50 % (accompagnement de légumes) et 59 % (accompagnement de pommes de terre) pour le hot chicken et entre 70 % (accompagnement de légumes) et 78 % (accompagnement de pommes de terre) pour le poulet BBQ. Le choix d'accompagnement a une influence limitée sur l'empreinte carbone totale du plat en la faisant varier de seulement 0,11 g éq. CO₂ l'empreinte carbone par portion au plus.

Au regard de cette analyse, les résultats sont sensibles à la décision d'inclure ou de ne pas inclure un accompagnement. En revanche, ils sont moins sensibles au type d'accompagnement choisi parmi les accompagnements proposés. Pour cette raison, il a été choisi d'inclure un accompagnement moyen au poulet BBQ et au hot chicken, plats généralement consommés par les usagers avec un accompagnement d'une part constituer une portion individuelle de repas afin de pouvoir les comparer aux autres plats du menu et d'autre part pour que la note attribuée soit représentative d'une portion typique de repas principal.